Phison aiDAPTIVLink User Guide

Environment Pre-configured & Ready to Use

Back to Dashboard

1. VPN Application

To access the laboratory resources remotely, you must first apply for VPN access. Please fill out the form below.

2. Start Training (CLI)

The environment is pre-configured. You can start a training session using the phisonai2 command launcher.

Make sure you have your env_config.yaml and exp_config.yaml ready.

# Basic Syntax
phisonai2 --env_config  --exp_config 

# Example usage:
phisonai2 --env_config ~/Desktop/aiDAPTIV2/commands/env_config/env_config.yaml --exp_config ~/Desktop/aiDAPTIV2/commands/exp_config/exp_config.yaml

Note: It is recommended to use screen or tmux sessions for long-running training jobs.

3. Configuration Settings

You need to configure two YAML files before running the training:

A. Environment Config (env_config.yaml)

Defines paths for models, datasets, and SSD caching.

path_settings:
  model_name_or_path: "/home/$USER/Desktop/llm/Llama-3.1-8B-Instruct"
  data_path:
    - ./dataset_config/text-generation/QA_dataset_config.yaml
  nvme_path: "/mnt/nvme0"  # Path to aiDAPTIVCache
  output_dir: "/home/$USER/output"
  log_name: "training_log.log"

B. Experiment Config (exp_config.yaml)

Defines hyperparameters, GPU settings, and task types.

process_settings:
  num_gpus: 1
  specify_gpus: 0

run_settings:
  task_type: "text-generation" 
  task_mode: "train"
  num_train_epochs: 1
  per_device_train_batch_size: 1
  learning_rate: 0.000007

4. Python Code Integration

If you are writing your own training script, import the phisonlib middleware to enable aiDAPTIVLink.

# 1. Import Phison Middleware
from phisonlib.moirai import initialize, save_model, MoiraiConfig

# 2. Initialize Model (Stream Mode)
model = prepare_bf16_hf_model_init_stream(
    model_name_or_path=MODEL_PATH, 
    tokenizer=tokenizer
)

# 3. Apply Middleware
moirai_config = prepare_config()
model, optimizer = initialize(module=model, config=moirai_config)

# Now proceed with your standard training loop...

5. Monitoring Logs

Logs are generated in the directory where you execute the command. Use tail to monitor progress in real-time.

# Replace 'your_log_name.log' with the actual filename defined in env_config.yaml
tail -f your_log_name.log

Look for the Loss value. A decreasing trend indicates successful training.